Forschende haben in einer internationalen Studie verschiedene Fettzellen in Fettgeweben des menschlichen Körpers untersucht. Durch den Einsatz innovativer Technologie konnten sie zum ersten Mal einzigartige Subpopulationen von Fettzellen identifizieren und Unterschiede zwischen menschlichen Fettgeweben in der interzellulären Kommunikation feststellen. Die Ergebnisse, an denen auch Wissenschaftler:innen der Universitätsmedizin Leipzig beteiligt waren, sind in der renommierten Fachzeitschrift Nature Genetics veröffentlicht worden. Sie bilden die Grundlage für weitere Forschung, um die personalisierte Medizin bei Adipositas voranzubringen.
In den letzten 20 Jahren ist die Sichtweise zur Funktion des Fettgewebes revolutioniert worden: Mit der Erkenntnis, dass das Fettgewebe über Hormone zahlreiche biologische Prozesse, wie zum Beispiel Appetit und Sättigung, steuert. Welche Zellen des Fettgewebes in diesen Prozessen die entscheidende Rolle spielen, ist aber noch nicht geklärt. Deshalb wurde in der aktuellen internationalen Studie bei gesunden Menschen Fettgewebe hinsichtlich der zellulären Zusammensetzung mit einer neuartigen Methode, der Einzelzell-Sequenzierung, untersucht. Proben aus der Leipzig Obesity BioBank hatten daran einen wesentlichen Anteil.
Forschende unter Federführung der Ben-Gurion-Universität des Negev in Israel fanden heraus, dass es im menschlichen Fettgewebe spezialisierte Fettzellen gibt, die sich hinsichtlich ihrer biologischen Funktion deutlich unterscheiden. „Die „klassischen“ Fettzellen spielen eine Rolle im Stoffwechsel von Glukose und Fett, während die „nicht-klassischen“ Fettzellen bei Entzündungsprozessen, der Entstehung von Fibrose im Fettgewebe und der Gefäßneubildung von Bedeutung sind. Zwischen diesen Zell-Subtypen gibt es dynamische Übergänge“, erklärt Prof. Dr Matthias Blüher, Professor für klinische Adipositas an der Universität Leipzig und Mitautor der Studie.
Zudem stellten die Wissenschaftler:innen fest: Eine Entzündung und Fehlfunktion des Fettgewebes scheint bei bestimmten Fettdepots – wie dem inneren Bauchfett oder Unterhautfettgewebe – unterschiedlich zu sein. Die Zellzusammensetzung des Fettgewebes ist von einer Entzündungsreaktion im Gewebe stark abhängig. Beteiligt an der wissenschaftlichen Publikation waren von der Universitätsmedizin Leipzig auch Prof. Dr. Antje Körner und Prof. Dr. Martin Gericke.
Zellen mit Strichcode markiert
Für die Studie wurde eine innovative Technologie verwendet, die RNA-Moleküle kartiert, die die Grundlage für die Übersetzung des Genoms in Proteine bilden. Diese sogenannte Einzelzell-Sequenzierung basiert darauf, dass an die RNA-Moleküle jeder Zelle ein „Barcode“ angebracht wird. Auf diese Weise werden Tausende von Zellen, aus denen das Gewebe besteht, gleichzeitig mit einem Strichcode versehen, der es ermöglicht, Zellen mit ähnlichen Untergruppen von RNA-Molekülen, die zum selben Zelltyp gehören, und Zellen mit unterschiedlichen Untergruppen von RNA-Molekülen, die zu verschiedenen Zelltypen gehören, zu erkennen. Die Anwendung der Technologie auf Fettgewebeproben ermöglichte die Identifizierung bekannter Zelltypen, aus denen das Gewebe besteht, wie etwa Blutgefäßzellen, Zellen des Immunsystems und überraschenderweise bisher nicht charakterisierte Subtypen.
Das Forschungsprojekt wird fortgesetzt und untersucht im nächsten Schritt die Zustände krankhafter Veränderungen des Fettgewebes, zum Beispiel bei ausgeprägter Adipositas oder beim Lipödem, einer Erkrankung, bei der das Unterhautfettgewebe vermehrt auftritt und für starke Schmerzen sorgen kann.
Originalpublikation in Nature Genetics: Human subcutaneous and visceral adipocyte atlases uncover classical and nonclassical adipocytes and depot-specific patterns: https://www.nature.com/articles/s41588-024-02048-3
Die Studie ist Teil des internationalen „Human Cell Atlas Project“, bei dem in der Zusammenarbeit vieler Labore weltweit eine umfassende Karte aller Zelltypen und -subtypen erstellt werden soll, aus denen der menschliche Körper besteht. Die Forschungsarbeit wurde von der Chan Zuckerberg Initiative und von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Sonderforschungsbereichs 1052 „Mechanismen der Adipositas“ an der Universität Leipzig unterstützt.